The realization space is [1 1 0 x1 0 1 1 0 2*x1^2 - x1 x1^2 x1] [1 0 1 x1^2 - 2*x1 + 1 0 1 0 2*x1 - 1 2*x1^3 - 5*x1^2 + 4*x1 - 1 2*x1^3 - 5*x1^2 + 4*x1 - 1 2*x1^2 - 3*x1 + 1] [0 0 0 0 1 1 1 x1 x1^3 - x1^2 x1^3 - 2*x1^2 + x1 x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-4*x1^13 + 32*x1^12 - 105*x1^11 + 187*x1^10 - 199*x1^9 + 130*x1^8 - 51*x1^7 + 11*x1^6 - x1^5) avoiding the zero loci of the polynomials RingElem[x1^2 - 3*x1 + 1, 2*x1 - 1, x1 - 1, x1, x1 - 2, 3*x1 - 1, 2*x1^2 - 4*x1 + 1, 3*x1^3 - 8*x1^2 + 5*x1 - 1, 2*x1^3 - 6*x1^2 + 4*x1 - 1]